DRP Demonstration Workshop Demo D - Distribution Operations at DER High Penetration June 28, 2016 ### Content for Demonstration D - Objective - Summary of Project Proposal - Proposed Location Overview - Rationale - Conceptual Diagram - Cost Overview - Expected Outcomes # Demo D Objective and Expected Outcome #### **Objective:** Demonstrate a system that can operate multiple DERs (both third-party-owned and utility-owned) to provide grid benefits and assess how high penetration of DERs will influence distribution planning and investments #### **Expected Outcome:** Provide a technology test bed to prepare the utility to plan and operate a grid with high penetration of various types of DERs Integrated Grid Project within PRP Area (Johanna Jr & Camden substation) # Demo D: Summary of Project Proposal #### Scope - Plan, design and deploy grid modernization infrastructure to enable high penetration of DERs - Design and deploy control systems and protocols to coordinate and optimize operations of multiple DERs (customer-, 3rd party- and SCE-owned) - Field demonstrate the ability to operate an integrated distribution system to provide safe and reliable service - SCE estimated cost: \$23.7 (100% IGP EPIC Funded) #### **Approach** - Install advanced substation and distribution automation equipment to provide control and monitoring - Deploy telecommunications and advanced control systems to enable volt/VAR and power flow optimization applications - Utilize centralized and distributed systems to optimize DER - Provide DER visualization tools to assist system operators with system reconfiguration - Measure performance of DERs based on operational experience | Key Milestones | | |---|---------| | Project initiated following CPUC Decision | Q4 2016 | | Complete technical requirements specification | 1Q 2017 | | Select existing 3 rd party DERs and sign contracts | Q2 2017 | | Complete control system lab tests | Q3 2018 | | Initiate field testing (M&V) | Q2 2018 | | Complete M&V | Q2 2019 | | Issue final report | Q1 2020 | ## Proposed Location Overview ### Demo D Rationale - Proposal leverages existing projects and programs - Integrated Grid Project, Preferred Resource Pilot, SCE energy storage deployments, CEC EPIC funding (Sunspec Alliance and EPRI projects) - Scalable system capable of being transferred to the rest of the system - Utilize standard protocols, integrate with existing SCE systems, implement cyber secure systems, and deploy new FAN communications system - Prove-out several emerging technologies - Advanced volt/VAR and power flow control with DERs, increased operator situational awareness with DER, and next generation distribution automation equipment - Sited with existing DER penetration and more expected - PV, storage, and demand response mix - One circuit with 50+% and 3 with 10 15% penetration in 2017 - Will add SCE-owned battery storage (pilot project) - Will add resources resulting from PRP solicitation (location TBD) - Integrate range of DER resource ownership/control models - Customer, third-party, aggregator, and SCE ## Demo D Conceptual Diagram **Cyber Security & Interoperability** #### **ADVANCED NETWORK & CONTROLS** ### Demo D Cost Overview | Demonstration D: SCE Implementation Cost Estimate | | | |---|-----------------------|--------| | Activity | Est. Amount (\$'000s) | | | Design and Engineering | \$ | 400 | | Equipment and Services | \$ | 10,500 | | Laboratory Testing | \$ | 6,800 | | Field Equipment Deployment | \$ | 3,300 | | Measurement & Validation (Data Analysis) | \$ | 2,400 | | Project Management | \$ | 250 | | Total | \$ | 23,650 | - Demo D is funded within SCE's existing EPIC project, the Integrated Grid Project - The budget includes the design, lab testing, and field deployment of technologies that facilitate high penetration DERs including: - DER control and optimization applications - Field area network (FAN) for communications - Back-office and integration systems # Demo D Expected Outcomes | | Potential Demonstration Results | |-------------------|--| | Reliability | Potential to reduce the number and duration of service interruptions while limiting the size of an outage using automated protection devices Potential to provide better grid operator visibility of the location and status of DER resources | | Technology | Demonstrate methods to securely share information between DER aggregator and SCE back office systems Understand high speed field area network and its ability to distribute data to maximize the efficiency of the distribution grid Demonstrate advanced field devices (substation and distribution), communications, control algorithms and utility back-office processing can create a system to allow for increased integration of DERs Gain experience with an end-to-end cybersecurity system that allows DERs, controls, and utility automation equipment to operate safely and reliably | | Capability | Understand how an advanced controller can optimize a circuit's voltage profile and real and reactive power flow for high penetration DERs Understand the maturity of DER products and associated services for incorporating best-of-breed applications Improve the planning and operational capabilities with high penetration of DERs | | Products/Services | Understand how to Incorporate DER aggregators into markets for real and reactive power, grid voltage
regulation and power flow optimization | ### Questions